404 research outputs found

    Stability of a spherical flame ball in a porous medium

    No full text
    Gaseous flame balls and their stability to symmetric disturbances are studied numerically and asymptotically, for large activation temperature, within a porous medium that serves only to exchange heat with the gas. Heat losses to a distant ambient environment, affecting only the gas, are taken to be radiative in nature and are represented using two alternative models. One of these treats the heat loss as being constant in the burnt gases and linearizes the radiative law in the unburnt gas (as has been studied elsewhere without the presence of a solid). The other does not distinguish between burnt and unburnt gas and is a continuous dimensionless form of Stefan's law, having a linear part that dominates close to ambient temperatures and a fourth power that dominates at higher temperatures.Numerical results are found to require unusually large activation temperatures in order to approach the asymptotic results. The latter involve two branches of solution, a smaller and a larger flame ball, provided heat losses are not too high. The two radiative heat loss models give completely analogous steady asymptotic solutions, to leading order, that are also unaffected by the presence of the solid which therefore only influences their stability. For moderate values of the dimensionless heat-transfer time between the solid and gas all flame balls are unstable for Lewis numbers greater than unity. At Lewis numbers less than unity, part of the branch of larger flame balls becomes stable, solutions with the continuous radiative law being stable over a narrower range of parameters. In both cases, for moderate heat-transfer times, the stable region is increased by the heat capacity of the solid in a way that amounts, simply, to decreasing an effective Lewis number for determining stability, just as if the heat-transfer time was zero

    Blow-up in a System of Partial Differential Equations with Conserved First Integral. Part II: Problems with Convection

    Get PDF
    A reaction-diffusion-convection equation with a nonlocal term is studied; the nonlocal operator acts to conserve the spatial integral of the unknown function as time evolves. The equations are parameterised by µ, and for µ = 1 the equation arises as a similarity solution of the Navier-Stokes equations and the nonlocal term plays the role of pressure. For µ = 0, the equation is a nonlocal reaction-diffusion problem. The aim of the paper is to determine for which values of the parameter µ blow-up occurs and to study its form. In particular, interest is focused on the three cases µ 1/2, and µ → 1. It is observed that, for any 0 ≤ µ ≤ 1/2, nonuniform global blow-up occurs; if 1/2 < µ < 1, then the blow-up is global and uniform, while for µ = 1 (the Navier-Stokes equations) there are exact solutions with initial data of arbitrarily large L_∞, L_2, and H^1 norms that decay to zero. Furthermore, one of these exact solutions is proved to be nonlinearly stable in L_2 for arbitrarily large supremum norm. An understanding of this transition from blow-up behaviour to decay behaviour is achieved by a combination of analysis, asymptotics, and numerical techniques

    Combustion waves in a model with chain branching reaction and their stability

    Full text link
    In this paper the travelling wave solutions in the adiabatic model with two-step chain branching reaction mechanism are investigated both numerically and analytically in the limit of equal diffusivity of reactant, radicals and heat. The properties of these solutions and their stability are investigated in detail. The behaviour of combustion waves are demonstrated to have similarities with the properties of nonadiabatic one-step combustion waves in that there is a residual amount of fuel left behind the travelling waves and the solutions can exhibit extinction. The difference between the nonadiabatic one-step and adiabatic two-step models is found in the behaviour of the combustion waves near the extinction condition. It is shown that the flame velocity drops down to zero and a standing combustion wave is formed as the extinction condition is reached. Prospects of further work are also discussed.Comment: pages 32, figures 2

    Ignition of thermally sensitive explosives between a contact surface and a shock

    Get PDF
    The dynamics of ignition between a contact surface and a shock wave is investigated using a one-step reaction model with Arrhenius kinetics. Both large activation energy asymptotics and high-resolution finite activation energy numerical simulations are employed. Emphasis is on comparing and contrasting the solutions with those of the ignition process between a piston and a shock, considered previously. The large activation energy asymptotic solutions are found to be qualitatively different from the piston driven shock case, in that thermal runaway first occurs ahead of the contact surface, and both forward and backward moving reaction waves emerge. These waves take the form of quasi-steady weak detonations that may later transition into strong detonation waves. For the finite activation energies considered in the numerical simulations, the results are qualitatively different to the asymptotic predictions in that no backward weak detonation wave forms, and there is only a weak dependence of the evolutionary events on the acoustic impedance of the contact surface. The above conclusions are relevant to gas phase equation of state models. However, when a large polytropic index more representative of condensed phase explosives is used, the large activation energy asymptotic and finite activation energy numerical results are found to be in quantitative agreement

    Global blow-up for a semilinear heat equation on a subspace

    Get PDF

    Cohomogeneity one manifolds and selfmaps of nontrivial degree

    Full text link
    We construct natural selfmaps of compact cohomgeneity one manifolds with finite Weyl group and compute their degrees and Lefschetz numbers. On manifolds with simple cohomology rings this yields in certain cases relations between the order of the Weyl group and the Euler characteristic of a principal orbit. We apply our construction to the compact Lie group SU(3) where we extend identity and transposition to an infinite family of selfmaps of every odd degree. The compositions of these selfmaps with the power maps realize all possible degrees of selfmaps of SU(3).Comment: v2, v3: minor improvement

    Strong Discontinuities in the Complex Photonic Band Structure of Transmission Metallic Gratings

    Get PDF
    Complex photonic band structures (CPBS) of transmission metallic gratings with rectangular slits are shown to exhibit strong discontinuities that are not evidenced in the usual energetic band structures. These discontinuities are located on Wood's anomalies and reveal unambiguously two different types of resonances, which are identified as horizontal and vertical surface-plasmon resonances. Spectral position and width of peaks in the transmission spectrum can be directly extracted from CPBS for both kinds of resonances.Comment: 4 pages, 4 figures, REVTeX version

    Coherent spin dynamics of rare-earth doped crystals in the high-cooperativity regime

    Get PDF
    Rare-earth doped crystals have long coherence times and the potential to provide quantum interfaces between microwave and optical photons. Such applications benefit from a high cooperativity between the spin ensemble and a microwave cavity -- this motivates an increase in the rare earth ion concentration which in turn impacts the spin coherence lifetime. We measure spin dynamics of two rare-earth spin species, 145^{145}Nd and Yb doped into Y2_{2}SiO5_{5}, coupled to a planar microwave resonator in the high cooperativity regime, in the temperature range 1.2 K to 14 mK. We identify relevant decoherence mechanisms including instantaneous diffusion arising from resonant spins and temperature-dependent spectral diffusion from impurity electron and nuclear spins in the environment. We explore two methods to mitigate the effects of spectral diffusion in the Yb system in the low-temperature limit, first, using magnetic fields of up to 1 T to suppress impurity spin dynamics and, second, using transitions with low effective g-factors to reduce sensitivity to such dynamics. Finally, we demonstrate how the `clock transition' present in the 171^{171}Yb system at zero field can be used to increase coherence times up to T2=6(1)T_{2} = 6(1) ms.Comment: 8 pages, 5 figure
    corecore